|
![]() |
Comments
|
Top Microsoft .NET Links
From the Blogosphere Tips for Data Scientists | @CloudExpo #BigData #IoT #ML #AI #DataScience
I have come to realize that we also need to address the other side of the data science equation
By: William Schmarzo
Oct. 9, 2018 05:00 AM
I spend a lot of time helping organizations to “think like a data scientist.” My book “Big Data MBA: Driving Business Strategies with Data Science” has several chapters devoted to helping business leaders to embrace the power of data scientist thinking. My Big Data MBA class at the University of San Francisco School of Management focuses on teaching tomorrow’s business executives the power of analytics and data science to optimize key business processes, uncover new monetization opportunities and create a more compelling, engaging customer and channel engagement. However in working with our data science teams, I have come to realize that we also need to address the other side of the data science equation; that we need to teach the data scientists in order for them to think like business executives. If the data science team cannot present the analytic results in a way that is relevant and meaningful to the business (so that it is clear what actions the business leaders need to take), then why bother. In order to engagement more effectively with the business users, here are a couple of key points that the data science team needs to understand as they conduct their analytics: #1: Tie the analytic results back to the organization’s key business initiatives, and more specifically, the organization’s key business decisions that drive them. As part of ensuring that the analytic results are relevant and meaningful to the business, it is also critical to tie the analytic results back to the organization’s key financial or business drivers. Figure 1 shows an example of linking the analytics to the organization’s key financial and business drivers around the following business decision: Which customers should receive which promotional offers? Figure 1: Sample of Key Financial And Business Drivers The Harvey Balls in Figure 1 show the relative impact that the promotional offer analytics would have on 6 key financial and business drivers in support of the customer targeting business decision. Tying the analytic results back to organization’s financial or business drivers is key to ensuring that the data science work is relevant and meaningful to the business. #2: Presentation of the analytic results is critical. For example, Figure 2 shows some sample analytic output that the data science team created around the business initiative of improving ground transportation effectiveness at a large location (e.g., shopping mall, port, arena) during a large event. Figure 2: Raw Analytic Results The business users had to look very hard at this slide to see what the slide was telling them about the business, and specifically what to do. That’s not what the business users want, and that is not how we ensure that our data science work is meaningful and actionable. Instead, let’s apply some basic concepts to surface the meaningful and actionable insights. In Figure 3, we’ve developed some simple extensions to ensure that the meaningful and actionable insights come to the surface. Figure 3: Presenting Actionable Insights Instead of expecting the business users to wade through the analytics to determine what to do, Figure 3 highlights the key analytic insights or business “takeaways” (sometimes called “aha’s”) in the blue ribbon. Then the rest of the slide can illustrate how the analytics support the conclusions and insights. In particular, we have:
Sometimes less really is more! And if you really want to drive home your analytic points, get a marketing expert (thanks Phil Dussault) to present the analytic insights into a way that is engaging and exciting, while still being informative (see Figure 4). Figure 4: Marketing Presentation of Analytic Results Now that’s way cool! Summary: “Thinking Like a Business Executive”
When the data scientist has accomplished those objectives, then they’re well on their way to making themselves indispensable to the business and crossing the chasm to “thinking like a business executive.” To hear a bit more about this “thinking like a business executive” approach, catch my “Respect the Data” presentation at the EMC Global Services booth at EMC World on Wednesday, May 4th at noon. The post Tips for Data Scientists: Think Like a Business Executive appeared first on InFocus. Microsoft .NET Latest Stories
Subscribe to the World's Most Powerful Newsletters
Subscribe to Our Rss Feeds & Get Your SYS-CON News Live!
|
SYS-CON Featured Whitepapers
Most Read This Week |